
IT Security Audit
completed by Néosoft

REQUIREMENT YOGI PLUGINS

DETAILED REPORT
12/13/23

Version 1.0

Requirement Yogi – Confidential Document Page 1 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

 Document history

Version Date Author(s) Description

1.0 12/13/23 Yawavi Jeona Lucie LATEVI
Mathieu GRANDMONTAGNE Document creation

 Audit description

Customer Requirement Yogi

Type IT Security Audit

Completed by Néosoft

Start date 12/11/23

End date 12/13/23

 Stakeholders

Role Name and company Contact

Customer Requirement Yogi
Jérôme RANCATI

Email:
jrancati@r-yogi.com

Audit responsible Néosoft
Nicolas GRANDJEAN
Audit Division Manager

Email:
nicolas.grandjean@neosoft.fr
Phone:
+33 1 41 46 08 00 / +33 6 23 69 12 82

Auditor Néosoft
Yawavi Jeona Lucie LATEVI
IT Security Auditor

Email:
yawavijeonalucie.latevi@neosoft.fr

Auditor Néosoft
Mathieu GRANDMONTAGNE
IT Security Auditor

Email:
mathieu.grandmontagne@neosoft.fr
Phone:
+33 6 22 89 29 33

Requirement Yogi – Confidential Document Page 2 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

 Table of contents

 1. Context..........................................................................................................................................4

 1.1 Objectives............................................................................................................................................4

 1.2 Approaches..........................................................................................................................................4

 1.3 Evaluation scales.................................................................................................................................5

 1.4 Service delivery caveats.......................................................................................................................5

 2. Audit scope...................................................................................................................................6

 2.1 General description..............................................................................................................................6

 3. Global synthesis...........................................................................................................................7

 3.1 Audit summary....................................................................................................................................7

 3.2 Compliance tables................................................................................................................................9

 4. Detailed results...........................................................................................................................11

 4.1 Description of a typical audit finding.................................................................................................11

 4.2 Detailed description of the audit findings..........................................................................................12

 5. Table of findings.........................................................................................................................18

 6. Table of recommendations........................................................................................................19

Requirement Yogi – Confidential Document Page 3 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

 1. Context

 1.1 Objectives

The  purpose  of  the  audit  was  to  perform  a technical assessment  of  the  security  of
the « Requirement Yogi Plugins ». The auditors also had to provide recommendations to fix the
identified vulnerabilities. 

The objectives could be summarized as follows:

- Perform a security assessment of the « Requirement Yogi Plugins » by identifying 
technical vulnerabilities on the target: the purpose was to evaluate its robustness 
against realistic attacks.

- Combine the audit notices with appropriate security criteria by evaluating potential 
impact level, likelihood level, risks and technical and business impacts of each 
vulnerability.

- Provide realistic and applicable technical and/or organizational recommendations to
assist both policy makers and technical teams in arbitration and implementation of 
corrective measures for short and mid-term.

- Present audit conclusions in a meeting as a technical restitution with the operational 
teams.

For this purpose, it was decided to contact an external company specialized in IT security audit
and penetration testing. This document is the detailed report of the audit performed by Néosoft in
this context.

 1.2 Approaches

The audit only consisted in a web penetration test with a black box and grey box approach.

The approaches are the following:

- "Black box": the tests are performed from the position of an external attacker without any
prior knowledge of the target, or without other prior knowledge than its name or the list of 
its exposed services, depending on the chosen approach.

- "Grey box": the auditors have access to limited information allowing them to expand the 
range of the possible scenarios. For example, they can have access to a global 
architecture diagram or have valid user accounts.

Requirement Yogi – Confidential Document Page 4 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

 1.3 Evaluation scales

The following scale was used to evaluate the global security level of the audit scope:

Excellent:
no identified vulnerability or very uncritical vulnerabilities

Good:
some identified vulnerabilities but with little real risks

Medium:
multiple identified vulnerabilities some of which deserve immediate attention

Low:
multiple identified vulnerabilities some of which associated to important risks

Poor:
a lot of identified vulnerabilities most of which associated to important risks

The following matrix was used to evaluate the criticality of the findings:

 1.4 Service delivery caveats

Néosoft wishes to inform the audit sponsor that absolute completeness cannot be guaranteed.
Although the approach proposed here is consistent with the state of the art in terms of penetration
testing, the results reflect  only what  a real attacker could with limited knowledge and time. It
therefore seems clear that in certain circumstances, in the case, for example, of an attacker with
consequent  resources,  in  terms  of  time,  of  people,  of  money,  other  attack  vectors  could
potentially, but not necessarily, be identified or even exploited.

Requirement Yogi – Confidential Document Page 5 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

 2. Audit scope

 2.1 General description

The audit  scope was composed of  two Requirement  Yogi  plugins accessible at  the following
URLs:

- https://ww1.stg.requirementyogi.cloud/

- https://ww2.stg.requirementyogi.cloud/

Requirement Yogi – Confidential Document Page 6 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

 3. Global synthesis

 3.1 Audit summary

The global  security  score  assigned  to  the service  is  A,  meaning  that  no critical
vulnerability has been identified. In fact, only 2 audit findings have been reported,
one of which is more a recommendation for improvement than a real vulnerability.

It  is possible to export  data in Excel format.  However,  malicious users (including
those with "user" profile) could deliberately enter malicious Excel formulas in these
data  in  order  to  execute  arbitrary code  on  the workstations  of  people  downloading  them.  A
security warning will probably be displayed when Excel is opened, but most users ignore these
warnings. The risk would therefore be to use the application as an attack vector to compromise
other users' workstations, to steal the data stored on them, or possibly to increase one's privileges
on the application (NOTICE_01).

Finally,  the Swagger  of  the API is  accessible without  authentication (NOTICE_02).  This is  not
necessarily a vulnerability, and it may be acceptable if you consider that your users need access
to this documentation. However, to limit the attack surface and ensure in-depth security, it may
sometimes  be  a  good  idea  to  restrict  exposure  of  the  documentation,  especially  if  the  API
exposes sensitive endpoints that can be attacked based on the documentation.

Except  for  these two points,  the plugin's  overall  level  of  cybersecurity is  very good,  and the
OWASP tests  performed did not  result  in  any JavaScript  or  server  code injection,  in  access
control  or  session management  issues (JWT) or  in  any configuration problems that  could be
exploited by an external attacker or malicious user.

Main positive points:

Very limited potential attack surface

Very few audit findings

Non-critical audit findings

Very quick fixes proposed

JWT session tokens well signed / secured

Security good practices generally taken 
into account

Main identified weaknesses:

Excel formula injection

Access to the Swagger

Requirement Yogi – Confidential Document Page 7 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

Findings by criticality level

In  conclusion,  we  recommend  the  implementation  of  an  action  plan  based  on  the
recommendations of this report.

Note: the « Table of recommendations » section of the end of the document presents a list
of  the  main  recommendations  proposed  by  the  auditors.  A  view  of  the  risks  after
application of these measures is also provided.

Requirement Yogi – Confidential Document Page 8 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

 3.2 Compliance tables

The tables below show a recap of the compliance level of the scope with respect to the applicable
standards.

The controls are listed in the left column, and the findings associated to each control are reported in
the right one. In this way, a control with at least one associated audit finding will be considered as not
compliant and will appear preceded by a red cross. On the contrary, a control which is not associated
to any finding will be considered as compliant.

Gaps with the "OWASP Top Ten":

Controls Associated findings

OUT OF TOP 10 WEAKNESSES

Some weaknesses identified during penetration testing do not fall into any of the OWASP Top 10 categories. These are
usually less frequent attacks but can sometimes be as serious. 

BROKEN ACCESS CONTROL

Access control enforces policy such that users cannot act outside of their intended permissions. Failures typically lead to
unauthorized information disclosure, modification, or destruction of all data or performing a business function outside the
user's limits. 

CRYPTOGRAPHIC FAILURES

The first thing is to determine the protection needs of data in transit and at rest. For example, passwords, credit card
numbers, health records, personal information, and business secrets require extra protection, mainly if that data falls under
privacy laws, e.g., EU's General Data Protection Regulation (GDPR), or regulations, e.g., financial data protection such as
PCI Data Security Standard (PCI DSS). 

INJECTION

An  application  is  vulnerable  to  attack  when:  user-supplied  data  is  not  validated,
filtered, or sanitized by the application; dynamic queries or non-parameterized calls
without context-aware escaping are used directly in  the interpreter;  hostile  data is
used within object-relational mapping (ORM) search parameters to extract additional,
sensitive records; hostile data is directly used or concatenated; the SQL or command
contains the structure and malicious data in dynamic queries, commands, or stored
procedures. Some of the more common injections are SQL, NoSQL, OS command,
Object Relational Mapping (ORM), LDAP, and Expression Language (EL) or Object
Graph  Navigation  Library  (OGNL)  injection.  The  concept  is  identical  among  all
interpreters. 

NOTICE_01

INSECURE DESIGN

Insecure design is a broad category representing different weaknesses, expressed as “missing or ineffective control design.”
Insecure design is not the source for all other Top 10 risk categories. There is a difference between insecure design and
insecure  implementation.  We differentiate  between  design  flaws  and  implementation  defects  for  a  reason,  they  have
different root causes and remediation. A secure design can still have implementation defects leading to vulnerabilities that
may be exploited. An insecure design cannot be fixed by a perfect implementation as by definition, needed security controls
were never created to defend against specific attacks. One of the factors that contribute to insecure design is the lack of
business risk profiling inherent in the software or system being developed, and thus the failure to determine what level of
security design is required. 

Requirement Yogi – Confidential Document Page 9 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

SECURITY MISCONFIGURATION

The application might be vulnerable if the application is: missing appropriate security
hardening  across  any  part  of  the  application  stack  or  improperly  configured
permissions on cloud services; unnecessary features are enabled or installed (e.g.,
unnecessary ports, services, pages, accounts,  or privileges);  default  accounts and
their passwords are still enabled and unchanged; error handling reveals stack traces
or other overly informative error messages to users; for upgraded systems, the latest
security features are disabled or not configured securely; the security settings in the
application servers, application frameworks (e.g., Struts, Spring, ASP.NET), libraries,
databases,  etc.,  are  not  set  to  secure  values;  the  server  does not  send security
headers or directives, or they are not set to secure values; the software is out of date
or vulnerable (see A06:2021-Vulnerable and Outdated Components). 

NOTICE_02

VULNERABLE AND OUTDATED COMPONENTS

You are likely vulnerable: if you do not know the versions of all components you use (both client-side and server-side), this
includes components you directly use as well as nested dependencies; if the software is vulnerable, unsupported, or out of
date. This includes the OS, Web/application server,  database management  system (DBMS), applications, APIs and all
components, runtime environments, and libraries; if you do not scan for vulnerabilities regularly and subscribe to security
bulletins  related  to  the  components  you  use;  if  you  do  not  fix  or  upgrade  the  underlying  platform,  frameworks,  and
dependencies in  a risk-based,  timely fashion,  this commonly happens in environments when patching is  a monthly or
quarterly  task under  change control,  leaving organizations open to  days  or  months of  unnecessary  exposure  to  fixed
vulnerabilities; if software developers do not test the compatibility of updated, upgraded, or patched libraries; if you do not
secure the components’ configurations (see A05:2021-Security Misconfiguration). 

IDENTIFICATION AND AUTHENTICATION FAILURES

Confirmation of the user's identity,  authentication, and session management is critical to protect against authentication-
related attacks. There may be authentication weaknesses if the application: permits automated attacks such as credential
stuffing, where the attacker has a list of valid usernames and passwords; permits Brute Force or other automated attacks;
permits default, weak, or well-known passwords, such as "Password1" or "admin/admin"; uses weak or ineffective credential
recovery and forgot-password processes, such as "knowledge-based answers," which cannot be made safe; uses plain text,
encrypted, or weakly hashed passwords data stores (see A02:2021-Cryptographic Failures); has missing or ineffective multi-
factor authentication; exposes session identifier in the URL; reuse session identifier after successful login; does not correctly
invalidate  Session  IDs;  user  sessions  or  authentication  tokens  (mainly  single  sign-on  (SSO)  tokens)  aren't  properly
invalidated during logout or a period of inactivity. 

SOFTWARE AND DATA INTEGRITY FAILURES

Software and data integrity failures relate to code and infrastructure that does not protect against integrity violations. An
example of this is where an application relies upon plugins, libraries, or modules from untrusted sources, repositories, and
content delivery networks (CDNs). An insecure CI/CD pipeline can introduce the potential for unauthorized access, malicious
code,  or  system  compromise.  Lastly,  many  applications  now  include  auto-update  functionality,  where  updates  are
downloaded  without  sufficient  integrity  verification  and  applied  to  the  previously  trusted  application.  Attackers  could
potentially upload their own updates to be distributed and run on all installations. Another example is where objects or data
are encoded or serialized into a structure that an attacker can see and modify is vulnerable to insecure deserialization. 

SECURITY LOGGING AND MONITORING FAILURES *

SERVER-SIDE REQUEST FORGERY (SSRF)

SSRF flaws occur whenever a Web application is fetching a remote resource without validating the user-supplied URL. It
allows an attacker to coerce the application to send a crafted request to an unexpected destination, even when protected by
a firewall, VPN, or another type of network access control list (ACL). As modern Web applications provide end-users with
convenient features, fetching a URL becomes a common scenario. As a result, the incidence of SSRF is increasing. Also,
the severity of SSRF is becoming higher due to cloud services and the complexity of architectures. 

* Not applicable in the context of the current audit

Requirement Yogi – Confidential Document Page 10 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

 4. Detailed results

 4.1 Description of a typical audit finding

The  audit  results  are  reported  under  the  form  of technical  "audit  findings"  presented  in  a
standardized manner.

Each audit finding is described as follows:

[Identifier] – [Title]

Impacted scope: [Infrastructure / Server / Application / …]
[Criticality]

[Security criteria]: [Titles / Documents / Chapters / Sections / …]

Audit findings

[Short description of the audit findings]

Example: "the data entered in these forms are not properly validated before being used to build SQL
requests on server-side" (followed by a list of concerned URLs and parameters).

Impacts/Risks

[Description of the main associated risks]

Example:  "a  malicious  user  could  enter  SQL code  in  vulnerable  forms and  attempt  to  access  the
application's database containing data XXXX; please note, however, that the likelihood of this scenario
is XXXX because the attacker needs to be authenticated with a privileged account."

Proofs/Examples

[Proofs, examples and information needed to perform the attack]

Example: screenshots, scripts, etc.

Recommendations
to reduce or remove the identified risks

[Summary of the main recommendations]

Example: "always validate and encode all user inputs".

[Deadline]: [Details of the recommendations]

Example: "we recommend using a specialized API to validate and encode all user
inputs and thus avoid their direct inclusion in an SQL interpreter; for example, XXXX
framework provides appropriate functions which could be systematically used on all
HTML forms of the site. "

Requirement Yogi – Confidential Document Page 11 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

 4.2 Detailed description of the audit findings

NOTICE_01 – Excel formula injection

Impacted scope: https://ww1.stg.requirementyogi.cloud/
OWASP Top Ten: A3. Injection

Criticality : [2] Medium

Potential 
impact :

[2] Medium

Likelihood : [2] Medium

Audit findings

It  is  possible to export  data in  Excel  format.  However,  malicious users (including those with "user"
profile) could deliberately enter malicious Excel formulas in these data in order to execute arbitrary code
on the workstations of people downloading them. A security warning will probably be displayed when
Excel is opened, but most users ignore these warnings.

Associated risks

A malicious user with the profile "user" could intentionally inject malicious Excel formulas into data for
subsequent export by another user, or by a privileged user such as admin or space admin. This attack
can be used to execute arbitrary code on the workstations of people downloading Excel files.

The risk would therefore be to use the application as an attack vector  to compromise other users'
workstations,  to  steal  the  data  stored  on  them,  or  possibly  to  increase  one's  privileges  on  the
application.

Proofs/Examples

The screenshots below show an example of Excel command injection in the traceability feature label.
During export, the Excel formula will be exported without any modification, and will therefore be included
in the resulting file.

Here  we  inject  a  formula  that  will  launch  the  "calc.exe"  command  (the  Windows  calculator)  for
demonstration purposes, but any other code, including malicious code, could of course be launched
instead.

Requirement Yogi – Confidential Document Page 12 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

Command injection into the traceability label by the "user" account (=cmd | '/C calc'!'A1').

The injected code is saved for all profiles, including the admin.

Requirement Yogi – Confidential Document Page 13 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

Excel file export request.

We can see that the injected code runs when we open the Excel file on our workstation.

Recommendations
to reduce or remove the identified risks

Filter Excel formulas in exported files

Quick Wins: We recommend that you clean up the entries at export time by adding a single
quote at the beginning of each field. This way, Excel will interpret the cell content

Requirement Yogi – Confidential Document Page 14 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

Deadline: 1/3
as a string, even if it contains an "=" character. We also recommend filtering the
following characters: "+ - = @".

You can also set up a finer filter by checking the content of each field against the
content expected as input.

Requirement Yogi – Confidential Document Page 15 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

NOTICE_02 – Access to the Swagger

Impacted scope: https://ww2.stg.requirementyogi.cloud/swagger-ui/index.html
OWASP Top Ten: A5. Security Misconfiguration

Criticality : [1] Low

Potential impact : [1] Low

Likelihood : [1] Low

Audit findings

The  Swagger  of  the  plugin  is  accessible  without  authentication  at  the  following  URL:
"https://ww2.stg.requirementyogi.cloud/swagger-ui/index.html".

Associated risks

This is not necessarily a vulnerability and it may be acceptable if you consider that your users need
access to this documentation. However, to limit the attack surface and ensure in-depth security, it may
sometimes be a good idea to restrict  exposure of the documentation, especially if  the API exposes
sensitive endpoints that can be attacked based on the documentation.

Proofs/Examples

The screenshot below shows access to the Swagger:

Access to the Swagger.

Recommendations
to reduce or remove the identified risks

Requirement Yogi – Confidential Document Page 16 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

Filter access to the Swagger

Quick Wins:
Deadline: 1/3

We recommend checking if end users actually need to have direct access to the
Swagger. If not, access to the Swagger should be blocked or at least limited to
certain kinds of authenticated users.

Requirement Yogi – Confidential Document Page 17 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

 5. Table of findings

Identifiers Audit findings

 NOTICE_01 Excel formula injection

 NOTICE_02 Access to the Swagger

Requirement Yogi – Confidential Document Page 18 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

 6. Table of recommendations

Identifiers Summary of the proposed measures Q
W

S
T

M
T

MEASURE_01

[01]

Filter Excel formulas in exported files
x

MEASURE_02

[02]

Filter access to the Swagger
x

* QW  =  Quick Wins: measures likely to improve the level of security in the very short term
* ST  =  Short-Term: measures to be applied as soon as possible
* MT  =  Mid-Term: measures to be applied in the medium to long term

Requirement Yogi – Confidential Document Page 19 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

 Distribution of the findings after implementation of the Quick Wins

     At the time of the audit:

↓
     After implementation of the Quick Wins:

Requirement Yogi – Confidential Document Page 20 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

 Distribution of the findings after implementation of the short-term measures

     At the time of the audit:

↓
     After implementation of the short-term measures:

Requirement Yogi – Confidential Document Page 21 of 22



IT Security Audit
Requirement Yogi Plugins

Detailed Report – Version 1.0

 Table of contents

 1. Context..........................................................................................................................................4

 1.1 Objectives............................................................................................................................................4

 1.2 Approaches..........................................................................................................................................4

 1.3 Evaluation scales.................................................................................................................................5

 1.4 Service delivery caveats.......................................................................................................................5

 2. Audit scope...................................................................................................................................6

 2.1 General description..............................................................................................................................6

 3. Global synthesis...........................................................................................................................7

 3.1 Audit summary....................................................................................................................................7

 3.2 Compliance tables................................................................................................................................9

 4. Detailed results...........................................................................................................................11

 4.1 Description of a typical audit finding.................................................................................................11

 4.2 Detailed description of the audit findings..........................................................................................12

 5. Table of findings.........................................................................................................................18

 6. Table of recommendations........................................................................................................19

Requirement Yogi – Confidential Document Page 22 of 22


	1. Context
	1.1 Objectives
	1.2 Approaches
	1.3 Evaluation scales
	1.4 Service delivery caveats

	2. Audit scope
	2.1 General description

	3. Global synthesis
	3.1 Audit summary
	3.2 Compliance tables

	4. Detailed results
	4.1 Description of a typical audit finding
	4.2 Detailed description of the audit findings

	5. Table of findings
	6. Table of recommendations
	Distribution of the findings after implementation of the Quick Wins
	Distribution of the findings after implementation of the short-term measures


