
IT Security Audit
completed by Néosoft

REQUIREMENT YOGI PLUGINS

EXECUTIVE REPORT
03/03/25

version 2.0

Requirement Yogi – Confidential Document Page 1 of 6

IT Security Audit
Requirement Yogi Plugins

Executive Report – Version 2.0

 Document history

Version Date Author(s) Description

1.0 01/29/25 Yassine BOURKI
Yawavi Jeona Lucie LATEVI Document creation

2.0 03/03/25 Nicolas GRANDJEAN Retest of the 03/03/2025

 Audit description

Client Requirement Yogi

Type IT Security Audit

Completed by Néosoft

Start date 01/27/25

End date 01/29/25

 Stakeholders

Role Name and company Contact

Customer Requirement Yogi
Jérôme RANCATI

Email:
jrancati@r-yogi.com

Audit responsible Néosoft Cyber Data
Nicolas GRANDJEAN
Audit Division Manager

Email:
nicolas.grandjean@neosoft.fr
Phone:
+33 1 41 46 08 00 / +33 6 23 69 12 82

Auditor Néosoft Cyber Data
Yassine BOURKI
IT Security Auditor

Email:
yassine.bourki@neosoft.fr

Auditor Néosoft Cyber Data
Yawavi Jeona Lucie LATEVI
IT Security Auditor

Email:
yawavijeonalucie.latevi@neosoft.fr

Requirement Yogi – Confidential Document Page 2 of 6

IT Security Audit
Requirement Yogi Plugins

Executive Report – Version 2.0

 Global synthesis

 Audit summary

Summary of the retest (03/03/2025):

The global security score assigned to the service is now A.

The retest conducted on 03/03/2025 showed that all previously identified
vulnerabilities had been corrected. In fact, the point regarding the absence of
“SameSite” attribute on cookies is still active but cannot be corrected at the moment, as the
Keycloak solution doesn't support it (https://github.com/keycloak/keycloak/issues/19886). As this
issue is associated with a very low criticality, it was decided to rate it as false-positive.

Summary of the initial audit (29/01/2025):

The global security score assigned to the service is B. Only four vulnerabilities or areas for
improvement were identified, with little real risks.

First, the password policy is insufficient: users can choose extremely weak passwords (e.g., a
single character), making Brute Force attacks and account compromise through guessing
attempts much easier.

Additionally, the password change functionality does not verify the old password, allowing an
attacker with temporary access to a user session (e.g., via an unattended device) to modify the
password and gain permanent control over the account. Furthermore, the application's cookies,
including session cookies, lack the "SameSite" security attribute, increasing the risk of Cross-Site
Request Forgery (CSRF) attacks that could exploit unauthorized requests.

Finally, the server uses outdated TLS protocols (1.0 and 1.1), exposing data exchanges to
interception and Man In The Middle (MitM) attacks.

To mitigate these risks, we recommend enforcing a stronger password policy (minimum length,
complexity requirements), requiring validation of the old password before allowing a password
change, configuring security attributes for cookies, and disabling older TLS versions in favor of
modern protocols (TLS 1.2/1.3) with strong encryption suites.

Positive aspects were also identified, such as the absence of injection possibilities like XSS or
SQLi and the absence of reported file upload vulnerabilities. In addition, the service generally
adheres to security best practices, including correct input validation, secure coding standards and
regular updates.

Requirement Yogi – Confidential Document Page 3 of 6

IT Security Audit
Requirement Yogi Plugins

Executive Report – Version 2.0

Positive points:

Very limited potential attack surface

No injections identified (XSS, SQLi, SSTI, ...)

No access control issues found

JWT session tokens well signed / secured

No file upload vulnerabilities found

Security good practices generally taken into account

Quick implementation of the identified improvements

Findings by criticality level:

All the identified vulnerabilities have been fixed
after the retest of the 03/03/2025.

Requirement Yogi – Confidential Document Page 4 of 6

IT Security Audit
Requirement Yogi Plugins

Executive Report – Version 2.0

 Compliance tables

The tables below show a recap of the compliance level of the scope with respect to the applicable
standards.

The controls are listed in the left column, and the findings associated to each control are reported in
the right one. In this way, a control with at least one associated audit finding will be considered as not
compliant and will appear preceded by a red cross. On the contrary, a control which is not associated
to any finding will be considered as compliant.

Gaps with the "OWASP Top Ten":

Controls Associated findings

OUT OF TOP 10 WEAKNESSES *

BROKEN ACCESS CONTROL

Access control enforces policy such that users cannot act outside of their intended permissions. Failures typically lead to
unauthorized information disclosure, modification, or destruction of all data or performing a business function outside the
user's limits.

CRYPTOGRAPHIC FAILURES

The first thing is to determine the protection needs of data in transit and at rest. For example, passwords, credit card
numbers, health records, personal information, and business secrets require extra protection, mainly if that data falls under
privacy laws, e.g., EU's General Data Protection Regulation (GDPR), or regulations, e.g., financial data protection such as
PCI Data Security Standard (PCI DSS).

INJECTION

An application is vulnerable to attack when: user-supplied data is not validated, filtered, or sanitized by the application;
dynamic queries or non-parameterized calls without context-aware escaping are used directly in the interpreter; hostile data
is used within object-relational mapping (ORM) search parameters to extract additional, sensitive records; hostile data is
directly used or concatenated; the SQL or command contains the structure and malicious data in dynamic queries,
commands, or stored procedures. Some of the more common injections are SQL, NoSQL, OS command, Object Relational
Mapping (ORM), LDAP, and Expression Language (EL) or Object Graph Navigation Library (OGNL) injection. The concept is
identical among all interpreters.

INSECURE DESIGN

Insecure design is a broad category representing different weaknesses, expressed as “missing or ineffective control design.”
Insecure design is not the source for all other Top 10 risk categories. There is a difference between insecure design and
insecure implementation. We differentiate between design flaws and implementation defects for a reason, they have
different root causes and remediation. A secure design can still have implementation defects leading to vulnerabilities that
may be exploited. An insecure design cannot be fixed by a perfect implementation as by definition, needed security controls
were never created to defend against specific attacks. One of the factors that contribute to insecure design is the lack of
business risk profiling inherent in the software or system being developed, and thus the failure to determine what level of
security design is required.

SECURITY MISCONFIGURATION

The application might be vulnerable if the application is: missing appropriate security hardening across any part of the
application stack or improperly configured permissions on cloud services; unnecessary features are enabled or installed
(e.g., unnecessary ports, services, pages, accounts, or privileges); default accounts and their passwords are still enabled
and unchanged; error handling reveals stack traces or other overly informative error messages to users; for upgraded
systems, the latest security features are disabled or not configured securely; the security settings in the application servers,
application frameworks (e.g., Struts, Spring, ASP.NET), libraries, databases, etc., are not set to secure values; the server
does not send security headers or directives, or they are not set to secure values; the software is out of date or vulnerable
(see A06:2021-Vulnerable and Outdated Components).

Requirement Yogi – Confidential Document Page 5 of 6

IT Security Audit
Requirement Yogi Plugins

Executive Report – Version 2.0

VULNERABLE AND OUTDATED COMPONENTS

You are likely vulnerable: if you do not know the versions of all components you use (both client-side and server-side), this
includes components you directly use as well as nested dependencies; if the software is vulnerable, unsupported, or out of
date. This includes the OS, Web/application server, database management system (DBMS), applications, APIs and all
components, runtime environments, and libraries; if you do not scan for vulnerabilities regularly and subscribe to security
bulletins related to the components you use; if you do not fix or upgrade the underlying platform, frameworks, and
dependencies in a risk-based, timely fashion, this commonly happens in environments when patching is a monthly or
quarterly task under change control, leaving organizations open to days or months of unnecessary exposure to fixed
vulnerabilities; if software developers do not test the compatibility of updated, upgraded, or patched libraries; if you do not
secure the components’ configurations (see A05:2021-Security Misconfiguration).

IDENTIFICATION AND AUTHENTICATION FAILURES

Confirmation of the user's identity, authentication, and session management is critical to protect against authentication-
related attacks. There may be authentication weaknesses if the application: permits automated attacks such as credential
stuffing, where the attacker has a list of valid usernames and passwords; permits Brute Force or other automated attacks;
permits default, weak, or well-known passwords, such as "Password1" or "admin/admin"; uses weak or ineffective credential
recovery and forgot-password processes, such as "knowledge-based answers," which cannot be made safe; uses plain text,
encrypted, or weakly hashed passwords data stores (see A02:2021-Cryptographic Failures); has missing or ineffective multi-
factor authentication; exposes session identifier in the URL; reuse session identifier after successful login; does not correctly
invalidate Session IDs; user sessions or authentication tokens (mainly single sign-on (SSO) tokens) aren't properly
invalidated during logout or a period of inactivity.

SOFTWARE AND DATA INTEGRITY FAILURES

Software and data integrity failures relate to code and infrastructure that does not protect against integrity violations. An
example of this is where an application relies upon plugins, libraries, or modules from untrusted sources, repositories, and
content delivery networks (CDNs). An insecure CI/CD pipeline can introduce the potential for unauthorized access, malicious
code, or system compromise. Lastly, many applications now include auto-update functionality, where updates are
downloaded without sufficient integrity verification and applied to the previously trusted application. Attackers could
potentially upload their own updates to be distributed and run on all installations. Another example is where objects or data
are encoded or serialized into a structure that an attacker can see and modify is vulnerable to insecure deserialization.

SECURITY LOGGING AND MONITORING FAILURES *

SERVER-SIDE REQUEST FORGERY (SSRF)

SSRF flaws occur whenever a Web application is fetching a remote resource without validating the user-supplied URL. It
allows an attacker to coerce the application to send a crafted request to an unexpected destination, even when protected by
a firewall, VPN, or another type of network access control list (ACL). As modern Web applications provide end-users with
convenient features, fetching a URL becomes a common scenario. As a result, the incidence of SSRF is increasing. Also,
the severity of SSRF is becoming higher due to cloud services and the complexity of architectures.

* Not applicable in the context of the current audit

Requirement Yogi – Confidential Document Page 6 of 6

	Global synthesis
	Audit summary
	Compliance tables

